A Novel Hidden Markov Model for Credit Card Fraud Detection

نویسندگان

  • A. Prakash
  • C. Chandrasekar
  • S. B. Cho
  • H. J. Park
چکیده

Nowadays the customers prefer the most accepted payment mode via credit card for the convenient way of online shopping, paying bills in easiest way. At the same time the fraud transaction risks using credit card is a main problem which should be avoided. There are many data mining techniques available to avoid these risks effectively. In existing research they modelled the sequence of operations in credit card transaction processing using a Hidden Markov Model (HMM) and shown how it can be used for the detection of frauds. To provide better accuracy and to avoid computational complexity in fraud detection in proposed work semi Hidden Markov model (SHMM) algorithm of anomaly detection is presented which computes the distance between the processes monitored by credit card detection system and the perfect normal processes. With this we are implementing another method for fraud detection is that having a key idea is to factorize marginal log-likelihood using a variation distribution over latent variables. An asymptotic approximation, a factorized information criterion (FIC) obtained by applying the Laplace method to each of the factorized components. Our experimental results demonstrate that we can significantly reduce loss due to fraud through distributed data mining of fraud models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit Card Transaction Fraud Detection by using Hidden Markov Model

this paper proposes a HMM (Hidden Markov Model) based fraud detection system for credit card fraud detection. The method works on the statistical behavior of user’s transactions. Since the original transactions are not available due to privacy policies of bank we used here synthetically generated data for a credit card user, and then HMM model is trained using different size of sample of genera...

متن کامل

Credit Card Fraud Detection Using Hidden Markov Model-A Survey

Due to a rapid advancement in the electronic commerce technology, the use of credit cards has dramatically increased. As credit card becomes the most popular mode of payment for both online as well as regular purchase, cases of fraud associated with it are also rising. In this paper, we model the sequence of operations in credit card transaction processing using a Hidden Markov Model (HMM) and ...

متن کامل

A Survey on Hidden Markov Model for Credit Card Fraud Detection

Credit card frauds are increasing day by day regardless of the various techniques developed for its detection. Fraudsters are so expert that they engender new ways for committing fraudulent transactions each day which demands constant innovation for its detection techniques as well. Many techniques based on Artificial Intelligence, Data mining, Fuzzy logic, Machine learning, Sequence Alignment,...

متن کامل

Application of Hidden Markov Model in Credit Card Fraud Detection

In modern retail market environment, electronic commerce has rapidly gained a lot of attention and also provides instantaneous transactions. In electronic commerce, credit card has become the most important means of payment due to fast development in information technology around the world. As the usage of credit card increases in the last decade, rate of fraudulent practices is also increasing...

متن کامل

Credit Card Fraud Detection using Hidden Morkov Model and Neural Networks

-------------------------------------------------------------------ABSTRACT---------------------------------------------------With the emergence of internet and e-commerce, the use of credit card is an unavoidable one. The credit cards are used for purchasing goods and services. We can make both online and offline payment easily with the help of credit cards. For online transaction it uses virt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013